
Whitepaper | Sourced | Cloud Deployment Patterns | 1

WHITEPAPER

Cloud Deployment
Patterns
Exploring the transformation of the enterprise cloud journey

2 | Cloud Deployment Patterns | Sourced | Whitepaper2 | Cloud Deployment Patterns | Sourced | Whitepaper

Contents
What is a Cloud Deployment Pattern? 3

Avoiding the “Free for All Sprawl” 4

Infrastructure as Code 5

Deployment Pipelines 5

Continuous Integration & Deployment (CI/CD) 5

Understanding Common Deployment Patterns 6

Service Catalogue 7

Infrastructure Module Pipeline 9

Inline Validation Pipeline 12

Freedom with Guardrails 15

Implementing Control Strategy 18

Final Thoughts 20

Authors & References 21

What is a Cloud
Deployment Pattern?
A Cloud Deployment Pattern defines an approach to provisioning and managing the lifecycles of
resources in the cloud. It is often one of the most critical decisions that underpins and influences an
organisation’s cloud adoption journey.

Successful adoption of such deployment pattern for an organisation is made in consideration of the following factors:

Security and

Compliance Controls

Target

Operating Model

End User

Experience

Organisational

Capabilities

An organisation may adopt a deployment pattern based on the requirements, skills and capabilities at the time and gradually

evolve or supplement their approach to cloud consumption as they familiarise themselves with new services, tools,

and techniques.

Organisations often adopt multiple deployment patterns, enabling application teams of varying knowledge and skill levels to

migrate to public cloud at their own pace and comfort level.

4 | Cloud Deployment Patterns | Sourced | Whitepaper

Avoiding the “Free for All Sprawl”
The “free for all sprawl” frequently occurs when an organisation enables unrestricted access to services and resources in a cloud environment.

Runaway resources are provisioned often through uncontrolled “Click Ops” console interaction.

Without overarching governance or usage guidelines, this commonly results in:

Although this approach might be suitable for experimentation, training, and evaluation purposes, it does not lend itself well to production use cases at scale.

Extensive cost increases in the environment

Lack of visibility and understanding of

services and resources in use

Ineffective cost reporting and attribution

Difficulty in evaluating the

security posture of the environment

Inability to identify owners for provisioned resources

Costly audit and remediation initiatives

to bring the environment into compliance

Whitepaper | Sourced | Cloud Deployment Patterns | 5

Infrastructure as Code
One of the common better practices for modern

technology organisations is to define, run and update

infrastructure resources as code.

Taking form of a structured language such as JSON,

YAML or HCL, it is used to describe and enforce

the desired state of the infrastructure for the target

cloud environment. Tools and services including

CloudFormation or Terraform are often synonymous with

this approach and are often combined with Deployment

Pipelines as the foundation of a deployment pattern.

Deployment Pipelines
Deployment Pipelines encapsulate the automated and

repeatable steps required to create, update or terminate

cloud resources defined as code.

Enabling a range of capabilities, the pipelines are often

used as a more scalable alternative for provisioning cloud

resources. The complexity of each Deployment Pipeline

varies significantly based on the tooling, methodology or

the significance of the deployment requirements.

Continuous Integration
& Deployment (CI/CD)
Maintaining configuration as code enables use of familiar

software development practices, including automated

testing, Continuous Integration (CI) and Continuous

Deployment (CD) for the infrastructure components of

an application.

Understanding Common
Deployment Patterns

Working with a variety of organisations has allowed us to observe trends in
convergence to a set of Cloud Deployment Patterns over a number of years. To help
guide our clients, we have identified some common deployment patterns used in
organisations today. Each pattern comes with potential benefits and downsides and
should be carefully evaluated against the key factors of security controls, target
operating model, end user experience and organisational capabilities.

Service Catalogue

Inline Validation Pipeline

Infrastructure
Module Pipeline

Freedom
with Guardrails

Whitepaper | Sourced | Cloud Deployment Patterns | 7

Service Catalogue
The Service Catalogue pattern is based on consumption

of approved cloud patterns as catalogue items which

can be “requested” through a user interface, resulting in

provisioning and configuration of resources and services in

a target cloud environment.

Under this more restrictive pattern, end users cannot

access cloud services or tools outside of the catalogue.

As a result, this model is often adopted by organisations

with more traditional IT processes and capabilities that

lend themselves towards consuming Infrastructure as a

Service (IaaS).

The organisation’s cloud platform team has complete

control over operational, security and compliance

measures. This makes the model suitable for long-

running workloads or common deployment patterns that

change infrequently.

This deployment pattern exhibits the following characteristics and items
for consideration during evaluation:

Target Operating Model

• It reduces the barrier to entry due to the limited

direct user interactions to the public cloud platform

• There is a low operational overhead generated

for maintaining existing and developing additional

catalogue items and services

End User Experience

• The Developer flexibility is limited, as the full

range of services the cloud provider offers is

inaccessible unless exposed through a developed

catalogue item

• This model can be implemented as part of a

Deployment Pipeline workflow; however, the

catalogue often provides limited automation

processes and capabilities to developers

• This method abstracts away the native cloud

experience as developers will only leverage the

functionality exposed by service catalogue items

and their limited APIs

Security and Compliance

• Provides high confidence that the provisioned

resources are aligned to the target security

controls and remain at the defined standards

Organisational Capabilities

• This model can grow increasingly difficult as more

complex, non-IaaS services are offered with their

own unique lifecycles and workflows

Technical implementations of this
deployment pattern include:

• AWS Service Catalog

• GCP Private Catalog

• Azure Managed Applications

• ServiceNow with automated AWS

provisioning workflows

• Cloud broker provisioning platforms

• Amazon Managed Services (AMS)

• In-house provisioning interfaces backed

by CloudFormation templates or direct

API calls

https://aws.amazon.com/servicecatalog/?aws-service-catalog.sort-by=item.additionalFields.createdDate&aws-service-catalog.sort-order=desc
https://cloud.google.com/private-catalog/docs
https://azure.microsoft.com/en-au/services/managed-applications/
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/integrations-servicenow.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/integrations-servicenow.html
https://en.wikipedia.org/wiki/Cloud_broker
https://aws.amazon.com/managed-services/

8 | Cloud Deployment Patterns | Sourced | Whitepaper

© Sourced Group 2021

Whitepaper | Sourced | Cloud Deployment Patterns | 9

Infrastructure
Module Pipeline
The Infrastructure Module Pipeline is an Infrastructure

as Code (IaC) deployment pattern based on codifying

organisational opinions and architectures of how cloud

services should be configured, and providing them to

end users as a library of modular patterns. End users

provision applications by “assembling” these modules

as required, deploying them through a centralised

deployment pipeline.

Under this model, end users can only use modules offered

in the library, ensuring that all provisioned cloud resources

tightly align to the organisation’s security and operational

standards. The deployment pipeline in this case acts as

a gatekeeper to deployments, failing those requests that

are not leveraging modules from a common library.

In the context of this model, organisational opinions on

cloud resources could include:

• All compute instances must write system logs to a

centralised log store

• All databases must be encrypted with a specific

encryption key

• All resources must follow a set naming and

tagging format

• All Kubernetes pods must contain a security

sidecar container

The Terraform Module
Library Pattern

Terraform modules for common resources and services

are developed that align to the organisation’s standards.

These modules are published and distributed to the

internal teams for consumption through a registry or a set

of common version-controlled repositories.

The end users build solutions using these modules,

submitting the deployments through a common CI/CD

tool chain.

The logic in the Deployment Pipeline evaluates the code,

ensuring that all modules being used are sourced from a

library of approved patterns.

Non-compliant deployments are stopped and prevented

from occurring.

The Consumable Template
Library Pattern

In this implementation, a set of structured templates for

common resources and services are provided to the end

users as a documented Domain Specific Language (DSL).

The end users build solutions using these templates,

submitting deployments through a common CI/CD

tool chain where cloud provider provisioning templates

representing their solution are generated. Upon successful

template generation, it is then submitted to the cloud

provider’s API’s on behalf of the end user for provisioning.

Although similar to the Terraform Modules, DSL based

consumable patterns tend to be a lot more bespoke and

abstract than the implementation of the pattern away

from the consumers, often requiring just few parameters

to achieve a highly sophisticated deployment that might

also include lifecycle management of the resources.

An implementation of this pattern is shown in the diagram on the following page. User defined
infrastructure code is combined with a set of authorised modules or patterns maintained by
the organisation at the deployment time. After further testing and validation, the combined
infrastructure-as-code definitions are submitted to the Cloud Providers API for provisioning,
resulting in a deployment that is compliant with the organisation’s operational, reliability and
security controls.

https://en.wikipedia.org/wiki/Domain-specific_language

10 | Cloud Deployment Patterns | Sourced | Whitepaper

© Sourced Group 2021

This deployment pattern exhibits the following characteristics and items
for consideration during evaluation:

Target Operating Model

• Provides a library of approved architectural

patterns maintained by a central cloud team or as

inner-sourcing practice

• Provides a way to abstract cloud provider level

complexities away from end users who may not

be experts, letting them focus on application

deployment rather than provider intricacies

• Organisations may also be locked into specific

deployment Pipeline tooling which becomes

coupled with this deployment pattern, resulting in

a “platform lock-in”

End User Experience

• The library of consumable modules or templates

allows developers to rapidly assemble common

patterns across the organisation and deploy

applications faster and more consistently

• The standardised modules, templates and pipelines

must be developed and implemented prior to the

developers / end users being able to build and

deploy applications

• Does not always align with services that do not

support Infrastructure as Code practices (i.e. Chat

Bots, Internet of Things, Augmented Reality, etc.)

• Depending on the implementation, there can

be a perception from end users that they are

building a non-portable skill set as it is linked to an

organisation-specific tool-chain or closed source

templating language (DSL) that they cannot learn

or experiment with outside the organisation

Security and Compliance

• Provides high confidence that the provisioned

resources are aligned to, and remain at

defined standards

Organisational Capabilities

• The standardised deployment workflows can

greatly accelerate migration as it is adopted

across an organisation, while secure consumable

resource deployments leverage approved,

well-architected patterns

12 | Cloud Deployment Patterns | Sourced | Whitepaper

Inline
Validation Pipeline
The Inline Validation model is a deployment pattern that

leverages a centralised pipeline for consumers within the

organisation. At the core of this pattern is an enforced

inspection process established for validation of any

provisioning requests - only fulfilling them in the event

that the request is free of errors and misconfigurations.

This approach is generally implemented through

organisational convergence and adherence to a common

IaC templating language (such as Resource Manager,

CloudFormation, Deployment Manager templates or

Hashicorp Terraform), and relying on mandatory pipeline

stages for performing static analysis on the request prior

to provisioning.

It is the responsibility of the organisation’s technology

and security teams to ensure that there are suitable

checks implemented within the pipeline. It is critical to

ensure there is coverage for all services and configuration

properties of interest.

Requests that fail due to misconfiguration report

responses about issues that must be addressed in the

request for it to pass validation and progress to the

provisioning phase.

Using this approach, operational, compliance and security opinions can be enforced including:

• Do the resources in the template align to the

group’s naming convention?

• Are compute instances or containers attempting

to be deployed from images that contain

known vulnerabilities?

• Are there roles that do not include appropriate

constraints to ensure a least privilege model?

• Is there network configuration that permits traffic

from excessive address ranges such as 0.0.0.0/0?

Templates are passed through to the next stage for provisioning.

Templates are returned to the end user with error messages

containing guidance of changes that are required to align to the

required controls and standards.

If the validation stage fails:

If the validation stage is passed successfully:

An implementation of an inline validation pipeline is shown in the diagram on the following
page. The provisioning templates are submitted to a centralised pipeline that uses a static
analysis tool to check that the contained resources align to the required controls.

Whitepaper | Sourced | Cloud Deployment Patterns | 13

© Sourced Group 2021

14 | Cloud Deployment Patterns | Sourced | Whitepaper

This deployment pattern exhibits the following characteristics and items
for consideration during evaluation:

Target Operating Model

• Operational standards can be enforced with

intelligent feedback loop through the inspection of

cloud resources properties and patterns

Security and Compliance

• Security and Compliance standards can be

enforced with intelligent nagging through

the inspection of cloud resources properties

and patterns

• Due to the comprehensive nature of these

validation checks, policies must be generic enough

to address common configurations but aim to

avoid hindering development

• Languages that allow embedding of programmatic

code such as custom resources or serverless code

can be challenging to inspect with confidence

• Over time, this model risks the loss of granularity

as cloud services provisioning requests require

further inspection of additionally released

configuration attributes requiring the development

of new inline rule sets prior to provisioning

End User Experience

• Implementation through infrastructure-as-code

static analysis and linting provides developers

access to native tooling and use of direct and

native cloud services

Organisational Capabilities

• This model requires organisational convergence

on one provisioning language or engine, such

as Resource Manager, CloudFormation or

Deployment Manager templates or Hashicorp

Terraform which may not be suitable for all

application types

• This model also requires centralised and

mandatory Deployment Pipeline tool to be an

effective control

Technical implementations of this
deployment pattern include:

• Terraform Enterprise with Sentinel

An embedded policy-as-code framework,

integrated with HashiCorp Enterprise

Products, such as Terraform Enterprise. It

enables fine-grained, logic-based policy

decisions at run time.

• cfn_nag

A tool that looks for patterns in

CloudFormation templates that may

indicate insecure infrastructure, such as

IAM rules or security groups that are too

permissive, encryption or access logs that

aren’t enabled.

• OPA Policy checks against AWS

CDK resources

• Static Analysis of Azure ARM Templates

Using Microsoft Pester

https://www.terraform.io/docs/cloud/sentinel/index.html
https://aws.amazon.com/blogs/opensource/realize-policy-as-code-with-aws-cloud-development-kit-through-open-policy-agent/
https://github.com/stelligent/cfn_nag
https://aws.amazon.com/blogs/opensource/realize-policy-as-code-with-aws-cloud-development-kit-through-open-policy-agent/
https://aws.amazon.com/blogs/opensource/realize-policy-as-code-with-aws-cloud-development-kit-through-open-policy-agent/
https://markwarneke.me/2019-08-21-static-code-analysis-for-infrastructure-as-code/
https://markwarneke.me/2019-08-21-static-code-analysis-for-infrastructure-as-code/

Whitepaper | Sourced | Cloud Deployment Patterns | 15

Freedom
with Guardrails
Unlike the previously described approaches, the Freedom

with Guardrails model enables end users to access and

deploy workloads directly, utilising Cloud Providers’

APIs and native deployment capabilities without the

requirement of mandated tooling.

Organisational opinions and architectural patterns are not

directly enforced during the development life cycle unless

they are implemented by the team themselves.

Organisations adopting this approach require their end

users to be proficient at foundational cloud knowledge

and possess firm understanding of well architected

principles and security best practices for cloud adoption.

This ensures that the workloads deployed under this

model align to both the provider recommendations and

the business’ security and compliance guidelines.

High-level preventative controls (Guardrails) are applied

to the environments, providing broad, coarse-grained

controls, limiting some of the actions that may increase

security or operational risk for the environment, while

still providing high levels of flexibility to the end users for

deploying resources and using cloud services.

These controls might provide the following functionality:

• Allowing the use of networking resources within

an account whilst preventing the modification of

this configuration, thereby retaining authority of

network resources by a central team

• Allowing the creation of compute instances whist

denying the ability to expose them directly to

the internet

• Allowing the use of services in one particular

geographic region and denying their use in all

others due to data sovereignty concerns

• Allowing the provisioning of object storage

resources whilst limiting the ability to make the

objects stored within them accessible to the public

In addition to the preventative guardrails, organisational

compliance monitoring and reporting is implemented with

continuous compliance tools and services. These tools

leverage detective capabilities to analyse the state of the

resources deployed in the environment, compare them

to the organisation’s security or compliance baselines and

trigger alerts to notify suitable teams when misconfigured

resources have been deployed.

Example continuous compliance rules might include:

• Ensuring that there is no network configuration

that permits traffic from excessive address ranges

such as 0.0.0.0/0

• Ensuring that roles include appropriate constraints

to ensure a least privilege model

• Ensuring there are no storage devices, compute, or

database instances that are not using encryption

• Ensuring that object storage services are not open

to the public

• Ensuring that load balancers do not have incorrect

TLS settings

In addition to reporting on the deviation from the required

baseline, some governance tools have the ability to

remediate the issue through the deletion of the resource

or applying a suitable control to it.

"Organisations adopting this approach require their end users to be proficient at foundational
cloud knowledge and possess firm understanding of well architected principles and security
best practices for cloud adoption."

16 | Cloud Deployment Patterns | Sourced | Whitepaper

In the example deployment to the right, the end users

are deploying cloud resources directly to the cloud

environment, within the confines of a set of guardrails

implemented by a wider platform or security team.

These guardrails are deployed in the form of access

control boundaries, and end users are free to use any

tool or capability to provision resources to deploy

the workloads.

Continuous assurance is implemented through a

mixture of cloud platform native or third-party tools

that monitor the state of the resources by querying

the cloud platform APIs and triggering notifications for

non-compliant resources.

In more advanced implementations, these notifications

may invoke automatic remediation actions.

© Sourced Group 2021

Whitepaper | Sourced | Cloud Deployment Patterns | 17

This deployment pattern exhibits the following characteristics and items
for consideration during evaluation:

Target Operating Model

• Due to the direct access to the public cloud

platform, there is a risk that new services

can be consumed without establishing

organisational controls enforced through a

governance framework

• It is important to consider the potential for tooling

or method sprawl, as teams may choose different

third party offerings based on individual opinions or

personal agendas

End User Experience

• This model provides the highest level of flexibility

for development teams, allowing them to mix and

match tooling that plays to the best practices of

each service they leverage to run their applications

• As the cloud providers release new services and

features, the developers are able to immediately

start using them without a centralised team

having to review them and implement them into a

centralised library of patterns or mandated tooling

Security and Compliance

• Time will need to be spent on the development

of external governance rules and checks, or the

procurement of licences for a third party tool

• Depending on the maturity of the cloud providers’

access controls, the services that implement the

guardrails may not have the ability to impose

controls and restrictions on all available services or

configuration attributes

Organisational Capabilities

• Although model provides the highest level of

flexibility for development teams, it may become

challenging in organisations who are still familiarising

themselves with public cloud platforms as the

providers continue to release new services at an

accelerated pace

Technical implementations of this
deployment pattern include:

• Cloud Conformity

• Cloud Custodian

• Prisma Cloud

• Prowler

• Scout Suite

• Dome9

• AWS Managed Config Rules

• AWS Managed Conformance Packs

https://www.cloudconformity.com/
https://github.com/cloud-custodian/cloud-custodian
https://www.paloaltonetworks.com/prisma/cloud
https://github.com/toniblyx/prowler
https://github.com/nccgroup/ScoutSuite
https://dome9.com/compliance/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config_use-managed-rules.html
https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html

18 | Cloud Deployment Patterns | Sourced | Whitepaper

Implementing Control Strategy
In the realm of software development, the
Swiss cheese analogy is often used where
an organisation’s defences against failure are
modelled as a series of barriers, represented
by slices of cheese.

The holes in the slices represent weaknesses in individual

parts of the system, and are continually varying in size

and position across the slices. The system produces

failures when a hole in each slice momentarily aligns.

To reduce the chances of failures occurring, a software

team may introduce additional slices of cheese (in the

form of automated tests and checks) to further reduce

the likelihood of bugs passing through to the final product,

where they are most expensive to fix.

In the same way that development teams introduce

additional automated tests for software products, the

cloud deployment patterns can be overlaid with the goal

of providing greater visibility and governance over the

cloud environments.

In the example on the following page, we demonstrate

how the Inline Validation Pipeline model can be combined

with external governance tools and guardrails leveraged

from the Freedom with Guardrails model.

Security
Incident

Failures
Prevented

Stacked slices reduce the
chances of failures occurring as
there are fewer aligned holes for
security incidents to occur.

Whitepaper | Sourced | Cloud Deployment Patterns | 19

© Sourced Group 2021

20 | Cloud Deployment Patterns | Sourced | Whitepaper

Final Thoughts
Selecting a suitable Cloud Deployment Pattern is a foundational decision to enabling successful cloud
adoption at scale. Organisations often start with a more prescriptive and preventative approach as
they commence their journey, evolving to more flexible and detective models as they increase their
confidence, capabilities and organisational awareness of the cloud security best practices and well
architected principles.

When planning your deployment strategy, we encourage

you to introduce the flexibility and controls objectives

into your discussions, keeping in mind the organisational

capabilities and the target operating model for the

cloud environments.

It is also important to remember that as an organisation

grows, it will likely seek to adopt additional deployment

patterns to accommodate new requirements, evolving

operating models and technical maturity.

Implementing a Cloud Deployment Pattern that meets

the control objectives of your organisation is an important

decision which needs to be revisited continuously as your

organisation matures its consumption of cloud services.

Making the right, well informed decisions backed by

knowledge of your organisation will accelerate cloud

adoption, maintaining the right balance of flexibility and

controls appropriate for your environment, while reducing

friction and adoption hurdles for the end users.

Service
Catalogue

Infrastructure
Module
Pipeline

Freedom +
Guardrails

Inline
Validation
Pipeline

H
ig

h
Lo

w

Preventative DetectiveControls

F
le

xi
bi

lit
y

Authors & References

Authors

The foundations of this paper were originally constructed

by Sourced consultants Melody Huang and Keiran Sweet,

however this content represents the combined expertise

of our peers.

We would like to especially call out the technical and

creative input of Yuri Litvinov, Salma Datenis, Pedram

Sanayei and Jerri-anne Yap. Without their assistance, this

publication would not be possible.

Amazon Web Services (AWS)

Set Up a CI/CD Pipeline on AWS

AWS Service Catalog - Getting Started

Leveraging AWS CloudFormation to create an immutable

infrastructure network at Nubank

AWS re:Invent 2018: Streamlining Application

Development with AWS Service Catalog (DEV328)

AWS re:Invent 2017: Culture Shift: How to Move a Global

Financial Services Organization (FSV308)

AWS re:Invent 2017: Cloud Adoption in Regulated

Financial Services (SID328)

AWS re:Invent 2018: Cloud Custodian - OpenSource AWS

Security & Governance (DEM78)

Google Cloud Platform (GCP)

Laying the Groundwork: How to Build a Foundation in

Google Cloud

Cloud Deployment Manager

Microsoft

The Release Pipeline Model - Microsoft

Azure Resource Manager Templates

Static Analysis for Example Azure Data Lake Gen

2 Implementation

Static Code Analysis for ARM Templates?

Unlocking Azure with Puppet Enterprise

(Puppetconf 2017)

Miscellaneous

Open Policy Agent (OPA)

Conftest

Order in a world of snowflakes (Puppetconf, 2015)

Accelerate Your Cloud Journey with Automated Controls

and Governance (Future of Financial Services, 2020)

OPA Open Policy Agent Offering flexibility and security

with policy as code (Cloudsec 2019)

Why Atlassian uses an internal PaaS to regulate

AWS access

Effective Testing: The “Swiss Cheese” model

The Swiss Cheese Model (Wikipedia)

Killing Click Ops - What it is, why it’s a problem and how

to avoid it

What Is GitOps and Why It Might Be The Next Big Thing

for DevOps

Shifting Cloud Security Left - Scanning Infrastructure as

Code for Security Issues

Whitepaper | Sourced | Cloud Deployment Patterns | 21

https://aws.amazon.com/getting-started/projects/set-up-ci-cd-pipeline/
https://www.youtube.com/watch?v=A9kKy6WhqVA
https://aws.amazon.com/blogs/mt/leveraging-immutable-infrastructure-nubank/
https://aws.amazon.com/blogs/mt/leveraging-immutable-infrastructure-nubank/
https://www.youtube.com/watch?v=jvAAiWxYQwg
https://www.youtube.com/watch?v=jvAAiWxYQwg
https://www.youtube.com/watch?v=g236dI_nWIY
https://www.youtube.com/watch?v=g236dI_nWIY
https://www.youtube.com/watch?v=goX61THbKuA&t=1s
https://www.youtube.com/watch?v=goX61THbKuA&t=1s
https://www.youtube.com/watch?v=oY8Nmh6B7P8
https://www.youtube.com/watch?v=oY8Nmh6B7P8
https://www.youtube.com/watch?v=tbWeYvOHvJE
https://www.sourcedgroup.com/resources/whitepaper/laying-groundwork-google-cloud/
https://www.sourcedgroup.com/resources/whitepaper/laying-groundwork-google-cloud/
https://cloud.google.com/deployment-manager
http://download.microsoft.com/download/C/4/A/C4A14099-FEA4-4CB3-8A8F-A0C2BE5A1219/The%20Release%20Pipeline%20Model.pdf
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://markwarneke.me/2019-08-21-static-code-analysis-for-infrastructure-as-code/#resource-specific-static-analysis-for-example-azure-data-lake-gen-2-implementation
https://markwarneke.me/2019-08-21-static-code-analysis-for-infrastructure-as-code/#resource-specific-static-analysis-for-example-azure-data-lake-gen-2-implementation
https://www.shamirc.com/2017/07/static-code-analysis-for-arm-templates.html
https://www.youtube.com/watch?v=tbWeYvOHvJE
https://www.youtube.com/watch?v=tbWeYvOHvJE
https://www.openpolicyagent.org/
https://www.conftest.dev/
https://www.youtube.com/watch?v=d9T80hDDZNA
https://www.youtube.com/watch?v=gIDZPb9JFEw&ab_channel=SourcedGroup
https://www.youtube.com/watch?v=gIDZPb9JFEw&ab_channel=SourcedGroup
https://www.youtube.com/watch?v=1oHSW-9h-Bw
https://www.youtube.com/watch?v=1oHSW-9h-Bw
https://blog.developer.atlassian.com/why-atlassian-uses-an-internal-paas-to-regulate-aws-access/
https://blog.developer.atlassian.com/why-atlassian-uses-an-internal-paas-to-regulate-aws-access/
https://blog.feabhas.com/2011/12/effective-testing-the-swiss-cheese-model/
https://en.wikipedia.org/wiki/Swiss_cheese_model
https://www.august.com.au/blog/killing-click-ops-what-it-is-why-its-problematic-and-how-to-avoid-it/
https://www.august.com.au/blog/killing-click-ops-what-it-is-why-its-problematic-and-how-to-avoid-it/
https://www.atlassian.com/git/tutorials/gitops
https://www.atlassian.com/git/tutorials/gitops
https://blog.christophetd.fr/shifting-cloud-security-left-scanning-infrastructure-as-code-for-security-issues/
https://blog.christophetd.fr/shifting-cloud-security-left-scanning-infrastructure-as-code-for-security-issues/

22 | Cloud Deployment Patterns | Sourced | Whitepaper

About Sourced
Sourced Group an Amdocs Company (Sourced) is a global cloud consultancy that helps enterprises make the
most of cloud services with a focus on security, governance and compliance. With offices in ANZ, ASEAN,
North America, and EMEA, we provide professional services for securing, migrating and managing the cloud
infrastructure of large enterprise customers in highly-regulated industries.

sourced-group enquiries@sourcedgroup.com

@sourcedgroup www.sourcedgroup.com

https://www.linkedin.com/company/sourced-group
mailto:enquiries%40sourcedgroup.com?subject=
https://twitter.com/sourcedgroup?lang=en
https://www.sourcedgroup.com

	What is a Cloud Deployment Pattern?
	Avoiding the “Free for All Sprawl”
	Infrastructure as Code
	Deployment Pipelines
	Continuous Integration & Deployment (CI/CD)

	Understanding Common Deployment Patterns
	Service Catalogue
	Infrastructure Module Pipeline
	Inline Validation Pipeline
	Freedom with Guardrails

	Implementing Control Strategy
	Final Thoughts
	Authors & References

